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Abstract 

The statistical theory of  dynamical  diffraction, in the case 
E = 0, for which there is no long-range order, is 
reformulated with rigorous boundary conditions. The 
presence of  a coherent forward-diffracted wave along the 
boundary of  the influence region in the spherical-wave 
approach is taken into account. The integrated reflectivity 
is calculated in the case of  Laue geometry and is found to 
be significantly different from the result of  the previous 
formulations if x2rT  > 1 (X is the reciprocal of  the 
extinction distance, r is the correlation length of  the 
lattice imperfection and T is the crystal thickness along 
the incident direction). 

I. Introduction 

Following Kato (1980), the Bragg diffracted intensity 
from a randomly distorted crystal contains a coherent 
part and an incoherent part, which are related to the 
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Printed in Great Britain - all rights reserved 

statistical averages and to the statistical fluctuations of  
the wave amplitudes, respectively. Further developments 
and some modifications of  the original treatment of  Kato 
(1980) have been proposed by the various authors quoted 
in the reference list of  the present paper, and its 
applicability to some experimental data has been 
discussed recently by Schneider, Bouchard,  Graf  & 
Nagasawa (1992), Takama (1993) and Takama & Harida 
(1994). 

A more general form of  the statistical theory, based on 
wave equations more rigorous than the Takagi -Taupin  
equations used below, has also been proposed by Kato 
(1991), but this new advanced development is not 
considered in the present paper. The theory based on 
the Takagi -Taupin  equations can itself be reformulated 
in a more complete form, especially by reconsidering the 
boundary conditions along the edges of  the Borrmann 
fan. This was first done for the coherent waves (Guigay 
& Chukhovskii ,  1992; see also Kato, 1994). The purpose 
of  the present paper is to continue this reformulation for 
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the incoherent intensities in the particular case for which 
the static Debye-Waller factor E=0 .  This is to be 
considered as an intermediate step towards the calcula- 
tion of the incoherent intensities in the general case for 
which E has any value between 0 and 1. 

In the case where E = 0, for which there is no long- 
range order, the correlation length r of the crystal 
imperfection can be considered as corresponding to the 
size of the perfect blocks of the mosaic model in the 
conventional extinction theory; there would therefore be 
no primary extinction if r is supposed to be much smaller 
than the extinction distance A. Consequently, in 
agreement with the terminology of Becker & AI-Haddad 
(1990), the E = 0 case of the statistical theory with 
r << A, which is the actual case considered in the present 
paper, may be considered as the case of pure secondary 
extinction. 

2. Definition of the coherent waves and the 
incoherent intensities 

The dynamical wave propagation in a distorted crystal, 
for the condition of a single Bragg diffraction, is very 
conveniently described by the Takagi-Taupin equations 

OGo/OS o = igo*(s o, Sh) Gh(S O, Sh) ( la)  

O G h / O S  h : igo(So, Sh) Go(So, Sh), (lb) 

where Go(s o, Sh) and Gh(So, Sh) are the amplitudes of the 
wave components along the incident and the Bragg 
directions; s o and s h are oblique coordinates along these 
directions. We consider the case of a non-absorbing 
centrosymmetric crystal. X is then a real quantity equal to 
1 /A ,  A being the 'extinction distance', which is defined 
here as A = Vc/~F,  V c being the volume of the unit cell, 
F the scattering length of this unit cell and ~. 
the radiation wavelength. We shall use Q = 
~.X2/sin 20 B, 0 B being the Bragg angle, go(s o, Sh) is the 
'lattice phase factor' related to the displacement field 
u(s 0, sh) of the distorted crystal lattice and to the 
diffraction vector h: 

go(s o, sh) = exp[--tla • u(s o, Sh) ]. 

Let us consider an incident beam limited by an infinitely 
narrow slit located at the origin point O on the entrance 
surface of the crystal (Fig. 1). In this so-called spherical- 
wave case, the diffraction process produces a spreading 
of the total wave in the influence region s 0, s h > 0 (the 
Borrmann fan). Equations (la) and (lb) can then be 
written in integral form as 

Go(So, Sh) = 3(Sh) + God(s0, Sh) 
So 

= 8(Sh) + ix f d(go*((, Sh) Gh( (, Sh) (2a) 
0 

s h 

Gh(So, Sh) = ix  f do go(So, 17) Go(S o, 17). (2b) 
0 

The 8 function 8(Sh) represents the incident wave and 
God(S o, sh) the wave diffracted into the incident direction 
0s o. It is convenient to write 

So 

God(So, Sh) = ix  f d (  go*((, Sh) Gh((, Sh) (3a) 
0 

Gh(S O, S h) = ix  O(Sh) O(So) ~So, O) 
Sh 

+ ix f dr/~s0, 17) God(s 0, 11). (3b) 
0 

O(s) is the step function (equal to 0 for s < 0 and equal to 
1 for s > 0). O(Sh) and O(So) are introduced in the first 
term of (3b) for the reason that the successive terms of 
the multiple scattering expansion starting from 
G~I)= ixO(Sh)O(So)go(S O, 0) and obtained by iteration in 
formulae (3), 

--,(3) (-~(5) 
G h - - a ~  l ) k - O  h -k-,- ,h - k - . . .  

(4) 
. . . .  God = trOd + + + 

are then equal to zero outside the influence region 
(1) • • • SO, S h > O. G h is the kmemaUcal approximation of the 

Bragg diffracted wave. On the boundaries of the 
influence region, we get 

along 0s 0: 

Gh(S o, O) = iggo(s o, 0) ,  

God(s o, O) = - g2So, 

along Os h • (5) 

God (0, S h) = 0, 

Gh(O, Sh) = izgo(O, 0). 

Let us also consider the intensity distributions 
lo(s o, sh) = G~dGod and lh(S o, Sh) = G*hG h of the dif- 
fracted beams. They are such that 

OIo/ OSo = - i  xgo G*h God + c.c. 

Olh/OS h = ixgoG*hGod + c.c. + X2~(Sh), 
(6) 

the symbol c.c representing the complex conjugate of the 
preceding term. We have used the fact that ixgoGod is 
indeed equal to OGh/OS h for s h not equal to 0; the X28(Sh) 
term describes the discontinuity of lh(S o, Sh) at s h = O. 

In the statistical theory, go(s 0, Sh) is a random function 
characterized by a static Debye-Waller factor E and a 
correlation function g(u): 

(go(s o , s h ) ) = E  ( O < E <  1) 

(go*(So + u, sh)~So, sh)) = (go*(s0, sh + u) ~s0, sh)) (7) 
= E 2 + (1 - e ~) g(u). 

E = 1 corresponds to the case of a perfect crystal, g(u) is 
such that g(0) = 1 and g(oo) = 0; correlation lengths r 
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and r 2 are also defined as 

(3O (3O 

r = f du g(u),  r 2 = f du g2(u). (8) 
0 0 

We shall consider the same form of g(u) already used in 
our previous paper (Guigay & Chukhovskii, 1992), 

g(u)  = e x p ( - u / r ) .  (9) 

This is a very convenient model in many analytical 
calculations; we shall nevertheless write g(u) when this 
exponential model, which has also been recommended 
by Becker & A1-Haddad (1989) from a general 
discussion based on the theory of stochastic processes, 
is not necessarily assumed. 

The coherent diffracted waves are the averaged 
functions (Gh(So, Sh) ) and (God(So, Sh) ). According to 
Kato (1980), the intensities of the coherent waves 
represent only a part of the total diffracted intensities 
which are defined as 10 = (G~God) and I h - -  (G*hGh)  , the 
remaining parts being incoherent intensities: 

16(s o, Sh) = (G~aGod) -- (G~)  (God) = (G~God) - 1~ 

l~(so, sh) = (G*hGh)  - -  (G'h)(Gh) - -  (G*hG h) - I~. (10) 

The boundary conditions for the coherent waves and for 
the incoherent intensities are easily obtained from the 
general conditions (5): 

(Gh(S o, 0)) = (Gh(0, Sh) ) = ixE;  
( l l )  

(God(s o, 0)) = - x E s 0  , (God(0, Sh) ) = 0 

0 

/ / . / j ~ . . j  
, / / .  

Sh 

\ 

/ 

M / 

God 

Fig. 1. 'Optical paths' considered as successive pairs of scattering 
points. Path (a) contributes to (God) given in formula (16) and path 
(b) contributes to (ix~o*Gh) given in formula (19). An exponential 
factor g(ei) = exp(-ei/r) is associated with each pair, e i being the 
separation of the points of this pair; this gives a final factor 
exp[-(e I + e 2 +...)/r] = exp(-sh/r ) independent of the path from 
the origin point 0 to the observation point M(so, sh). 

I~(s o, O) - I~(O, Sh) --  (1 -- EZ)x2; 
(12) 

I6(s o, O) = 16(0, Sh) = O. 

The coherent waves satisfy integro-differential equations 
(Polyakov, Chukhovskii & Piskunov, 1991; Guigay & 
Chukhovskii, 1992; Kato, 1994): 

O(God) /Os o = O(Go) /Os o 

"- ixE(Gh(S O, sh) ) -- (1 -- E2)X 2 
Sh 

x f do g(sh -- r/)(G0(s0, 17)) (13a) 
0 

O(Gh) /Os h = i xE  (Go(s o, Sh) ) -- (1 - E 2 ) X  2 

So 

x f d ( g ( s o - - O ( G h ( ( , S h ) ) ,  (13b) 
0 

where it must be taken into account that 
(Go(so, Sh)) = 8(Sh) + (God(So, Sh)). 

According to Kato (1980), the incoherent intensities 
are supposed to satisfy transfer equations 

Ol6/Os o = 2 X 2 r e ( l ~  - -  16) + 2(1 - -  E 2 ) X 2 r I ~  (14a) 

Ol~/Os h = 2XZre(l~ -- I~) + 2(1 -- Ez)xzrI~. (14b) 

Here, r e is a new correlation length equal to (1 -E2)r2 ,  
according to AI-Haddad & Becker (1988). These 
equations, in which the coherent intensities are sources 
of the incoherent intensities, are valid for So, sh > r, but 
not for s h < r or s o < r. More rigorous equations valid in 
the whole influence region, in the special case E = 0, 
have been proposed recently by Chukhovskii & Guigay 
(1993) and will be more completely discussed in the 
present paper. 

3. The optical theorem in the dynamical theory 

In the theory of scattering by a single scattering centre, 
the total outgoing wave is the coherent sum of the 
incident plane wave plus the diffracted wave which 
interfere in the forward direction, giving rise to a 
negative interference term, which compensates exactly 
the total diffracted intensity (the intensity of the 
diffracted wave integrated over the scattering angles). 

This so-called 'optical theorem' is also valid in the 
dynamical theory of Bragg diffraction by a non- 
absorbing crystal, independently of the crystal deforma- 
tion. The interference term of the forward-diffracted 
wave God(So, Sh) with the incident wave 8(Sh) is equal to 
God(s 0, 0) = -XZso (Guigay & Chukhovskii, 1992); after 
leaving the crystal, the total intensity diffracted in the 
Bragg and in the forward directions is thus equal to 
x E T ,  T being the value of s o at the exit surface for 
s h = 0 (T is therefore the path length of the incident 
beam in the crystal); this corresponds to the kinematical 
value of the integrated intensity; in other words, the value 
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of the integrated intensity of the Bragg beam only in the 
well known kinematical approximation is rigorously the 
sum of the integrated intensities of the Bragg and 
forward-diffracted beams. This remarkable result is in 
agreement with the differential relation 

Olo/OS o + alh/Os h = X23(Sh) (15) 

obtained from equations (6) for the intensity distribu- 
tions. 

In the statistical theory, we shall calculate the coherent 
and incoherent parts of the integrated intensities of the 
Bragg and forward-diffracted beams and we shall 
therefore pay attention that their total sum is equal to 
the simple kinematical integrated intensity. 

4. The forward coherent diffracted wave in the case 
E = 0  

In this c a s e ,  (Gh(S O, Sh) ) = 0,  but there is, nevertheless, a 
forward coherent diffracted wave (God(s o, Sh) ) in the 
boundary region s h < r (Guigay & Chukhovskii, 1992). 
We shall prove analytically that, for E = 0, 

(God(So, Sh)) = --X(So/Sh)I/EJI[2X(SoSh)I/E]exp(--Sh/T ). 

(16) 

The E = 0 case of equations (13a) and (13b), together 
with the relevant boundary conditions, is 

Sh 

0(G0)/0s0 = X 2 f do g(sh -- o)(Go(so, O)) 
0 

(G0(0, sh)) = 8(Sh); (17a) 
$0 

O(Gh)/Os h = Z 2 f d~ g(s o - ~)(Gh( ~, Sh) ) 
0 

(Gh(So, 0)) = 0. (17b) 

Let us use the Laplace transform of equation (17a) with 
respect to s h and the Laplace transform of equation (17b) 
with respect to s o . We define: 

oo 

(Go(so, P)) = f dSh exp(--PSh)(Go(so, Sh)) 
0 
oo 

(Gh(P, Sh)) = f ds0 exp(--PSo)(Gh(So, Sh)) 
0 
(30 

g(p) = f ds exp( -ps )  g(s) 
0 

(s stands for s o or Sh). Equations (17a) and (17b) are 
transformed into differential equations: 

O(Go(so, P)) /OSo = x2 g(p) (Go(so, P)) 

O(Gh(P, Sh)) /OSh = x2 g(p) (Gh(P, Sh)) 

(Go(0,p)) = 1; 

(18a) 

(Gh(P,O)) - -0 .  

(18b) 

The corresponding solutions are 

(Go(s o, p)) = exp[-X2Sog(p)] and (Gh( p, sh) ) = O. 

It is thus verified that Gh(so, Sh) = 0; Go(S o, Sh) can be 
calculated in the case g(s) = e x p ( - s / r ) .  We have then 

(Go(so, p)) = exp[-xZso(p + l / r )  -I] 

which can be shown to be the Laplace transform with 
respect to sh of 

(Go(so, Sh)) = 3(Sh) -- X(So/Sh)I/2JI[2X(SoSh) 1/2] 

X exp(--sh/r ). 

Relation (16) is thus obtained since (Go(so, Sh) ) = 
8(Sh) + (God(S o, Sh) ). This result is also obtained more 
easily by the geometrical approach illustrated and 
explained in Fig. 1; simultaneously, we also obtain the 
useful relation 

(~o*Gh) = iXJo[2X(SoSh)l/2]exp(--Sh/r). (19) 

In (16) and (19), Jo[2X(soSh) l/z] and Jl[2X(SoSh) 1/2] are 
Bessel functions; (God) and (~O*Gh) are therefore equal 
to the perfect-crystal wave functions multiplied by 
exp( -sh /r  ). The coherent forward-diffracted intensity is 

l~(so, Sh) = X2(So/Sh)J21[2X(SoSh)1/Z]exp(--2Sh/r). (20) 

It is important for the following discussions to point out 
that: 

Ol~/Os o = 2(God)(ixtp*Gn) 

= 2X 3 exp(--2sh/r ) (So/Sh)I /2j  I [2X(SoSh) 1/2] 

x Jo[2X(soSh)i/2]. (21) 

5. More rigorous transfer equations for the 
incoherent intensity distributions in the case E = 0 

Using the integral expressions (2a) and (2b) for God and 
Gh, we consider 

$h S0 

qgG*hGod = X29(So, Sh) f do f d~9*(So, 0) 
0 0 

x ~0"(~, sh)G;(so, 0)Gh(~, Sh). (22) 

In the statistical theory for E = 0, we propose the 
following approximation: 

(¢P(So, Sh)~O*(So, O)¢P*(~, Sh) G~a(So, O) Gh(~, Sh)) 

= (~So, Sh)¢(So, '7)) 
X ( ~ 0 " ( ~ ,  Sh) GT)(s o, 11) Gh(~, Sh)) 

+ [1 - gE(Sh)](9(So, Sh)~p*(~, Sh) ) 

x (tp*(s o, 0) G•(so, O) Gn(~, sh)) 

= g(Sh -- 0)(9"(~, Sh) G~(s0, 0) Gh(~, Sh)) 
+ [1 - g2(Sh)  ] g ( s  0 - -  ~) 

x (¢p*(s o, 0) G~a(So, O) Gh(~, Sh)), 
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in which ~s0 ,  Sh) is coupled to ~0*(s 0, 17) or to tp*(~, Sh).  

The factor [1 - g2(sh) ] is introduced in order to make this 
approximation valid for s h < ~ and for s h >> r. Again,  
using the integral expressions (2a) and (2b), we get 

Sh 

ix(tpG*hGod) = Z 2 f do  g(Sh -- 17) 
0 

x (G~(s 0, 17) God(s o, Sh) ) 
So 

-- g2[1 -- g2(sh) ] f d~ g(s 0 - ~) 
0 

x (Gh(~, Sh) G*h(So, Sh)). (23) 

We now propose the new approximations 

(Gh(~, Sh) G~(s0, Sh) ) + C.C. --  2g(s 0 -- ~)*~(~, Sh) 

(G~(s o, r/) God(So, Sh)) + C.C. = 2(Go(s0, 17))(God(s o, Sh) ) 

+ 2g(Sh -- 17)*~(S0, r/), 

where we use the fact that (G0) and (God) are real 
functions. These approximations are consistent with the 
limiting cases such that (So - ()  and (Sh -- O) are either 
much larger or smaller than r; it is also easily verified 
that the first one is true in the kinematical approximation, 

(Gh(~, Sh) G*h(So, Sh)) = Z 2 ( ~ ,  Sh)Cp*(So, 17)) 

= z2g(So -- ~) 

and  

*], = X 2 . 

integration by parts) the following expression for 
*a(So, sO: 

Sh 

*~(So, Sh) = X 2 -- 2x3 f d o e x p ( - 2 0 / r ) ( S o / ~ 7 )  t/2 
0 

X Jt[2X(SoO)l/2]jo[2X(So?7)l/2 ] 

= X2j2[2X(SoSh)t/X]exp(--2Sh/~) + 2(X2/lr) 

Sh 
x fdr/exp(-2r//r)J2o[2X(Sor/)~/2]. (25) 

0 

It is interesting to note that we recover the formula for a 
perfect crystal in the limit r --~ oo. 

If  it is assumed that the variations of  the functions 
*~(~, Sh) and *6(s o, 17) over an interval of  width r for the 
variables ~ and 17 can be neglected, the convolution 
integrals in (24a) and (24b) can be approximated by 
r2*~(So, Sh) and r2*~(So, Sh). We thus obtain simpler 
transfer equations, with cr = 2X2Z'2, 

Ol~/Os o = + tr[1 - gZ(sh)lI~(s o, Sh) -- trl~(So, Sh) (26a) 

a,Llash = -or[1  - g2(Sh) ] I~(So, Sh) + trl~(So, Sh) 

21- ) (2~(Sh)  - -  Olo/OS O. (26b) 

For s h >> r, g(Sh) and Ol~/OSo ~ 0 and 8(Sh) Can be 
omitted; equations (26a) and (26b) are then reduced to 
the E = 0 case of  (14a) and (14b) with r e = r 2. 

We thus get 

ix(G*hGod) + C.C. 
Sh 

= 2X 2 f drl g2(s h - r/)l~(s o, 17) - 29{211 - g2(sh) ] 
0 

s 0 
x f d~g2(so - ~)l~,(~,Sh) + 2x2(aod) 

0 
s h 

x f do g(Sh -- r/)(ao(so, r/)). 
0 

We know from (17a) that the last integral is equal 
to O(Go)/Os o = O(God)/Os o. Therefore, l~(So, Sh) and 
l~(s 0, Sh) satisfy the following integro-differential equa- 
tions (Chukhovskii  & Guigay,  1993): 

s 0 
Ol;las o = 2X2[1 - gZ(Sh) ] f d~g2(s0 - ~)I~(~, Sh) 

0 
Sh 

-- 2X 2 f dr /g2(s  h - r/)lio(So, 17) (24a) 
0 

al~laSh = -alUaso + X2a(Sh) -- ag/aSo. (24b) 

For s h < r, we can use Ol~/as h = X2~(Sh)- alO/Os o. 
Assuming that g(s) = e x p ( - s / r ) ,  we can obtain (using 

6. T r a n s f e r  e q u a t i o n s  for  in tegrated  intens i t ies  

Let us consider the case of  symmetric Laue diffraction by 
a crystal of  uniform thickness t >> r. On the exit surface 
of the crystal, s o + s h = T = t /  cos 0 B is a constant equal 
to the crystal thickness along the incident direction (Fig. 
2). The integrated intensity of the Bragg diffracted beam 

0 

')  \ ' \  T 

• ~ ' \  

Fig. 2. Geometrical arrangement in the symmetrical Laue case. Because 
~ + 0 = T on the exit surface, the integrations along the basis AB of 
the influence region [see formulae (27) and (28)1 can be carried out 
by using ~ or 0 as the integration variable. 
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can be written as (~ and rl are used here instead of So and 
sh) 

T 

Rh(T) = Q x - 2 f d ~  lh(~, T -- ~), (27) 
0 

in which QX -2 is introduced as a normalization factor (Q 
has been defined in §2), in order to obtain the well known 
kinematical result R h ( T ) =  QT when lh(~, T -  ~) is a 
constant function equal to X 2. Similarly, the integrated 
intensity of the forward-diffracted beam is 

T 

Ro(T) = Qx-2 fdOlo(T  - 17, 17) (28) 
0 

• 

(R 0 and I o here stand for R~ and 16 or for R~ and I~); it is 
indeed convenient, for our calculations below, to use ~ as 
the integration variable in (27) and 17 as the integration 
variable in (28). Following a method used in a previous 
work on integrated intensities (Guigay, 1989), the 
integration of (27) or (28) will also be performed on all 
the other terms of (26a) and (26b) in order to transform 
these equations into transfer equations for the integrated 
intensities: 

(a) For the integration of Olr/Os o and Off)/Os o, using the 
fact that Ir(T - 17, rl) and I~(T - 17, 17) are equal to 0 for 
r/-- T, we get from (28) (with the same convention as for 
R o and 1 o) 

T 

dRo(T) /d r  = Qx-Z f d o  Olo(T - rl, rl)/OT. (29) 
o 

(b) For the integration of Olh/OSh, we must take into 
account that X26(Sh) is included in our definition of 
Oln/ OSh; consequently, 

T 

dRh(T) /dT = Qx-2 f d~ Olh( ~, T - ~)/OT, (30) 
0 

without an additional term lh(T, 0) equal to the value of 
lh( ~, T -- ~) for ~ = T, which would be present if X28(Sh) 
had not been included in Olh/OSh; in this case, X26(Sh) 
would not be present in the left-hand side of (24b) and 
(26b); the final results of the calculations are the same if 
xZ3(sh) is included or not included in Olh/Os h. 

(c) The integration of gZ(sh)l~(so, Sh) will be neglected 
because it leads to a quantity smaller than Qr, which is 
itself negligible with respect to R~. 

(d) 
T 

Qx-: fdo x~8(o) = O. 
0 

We finally obtain transfer equations for the integrated 
intensities: 

dR~/dT = ¢rRio(T) - erRS(T) - dRCo/dT + Q. (31b) 

According to (21 ) and (29), the derivative of R~ is, in the 
case g(r/) = exp(- r l / r ) ,  

T 

dR~/dT = Q 2 x f  d o e x p ( - 2 0 / r ) [ ( T  - 17)/0] ~/2 
0 

x J, {2x[(r - rl)rl]l/2}Jo{2X[(T - 17)011/2}. 

The following approximation is possible because of the 
exponential term exp( -2r / / r )  and because we suppose 
T >> r; replacing (T - 17) in this integral by T and setting 
the upper limit of integration to oo, we obtain a Laplace- 
transform integral, which can be calculated exactly: 

oo 

dl~o/dT = Q Z x f  dr lexp( -Zo / r ) (T / r l )  ~/z 
0 

x J,[2x(To)'/2]Jo[2X(To) '/2] 

= Q - Q exp(-crY)Io(~Y ), (32) 

where ~ = X2r is the same as in (26a) and (26b), since 
here r = 2r 2, I o is the modified Bessel function of order 
0, such that Io(X ) = Jo(ix). Equations (31a) and (31b) can 
then be written as 

dR~o/dY = o'R~(Y) - ~R~(T) (33a) 

dR~/dT = aRio(T) - erRS(T) + Q exp(-o'T)Io(aT), 

(33b) 

resulting in 

T 

R~ + Rio = Q f du exp( -~u) lo (ou  ) 
0 

= aT exp(-crT)[lo(oT) + I~(~T)] 
T 

R~ - R~ = Q f du exp[-2tr(T - u)] exp(-tru)lo(tru ) 
0 

= QT exp(-trT)[lo(trr  ) - I, (trT)]. 

I~ is the modified Bessel function of order 1 and we have 
used some classical properties of the modified Bessel 
functions. The final result is very simple: 

R~ = QT exp(-trT)Ii( trT ) (34a) 

Rib -- QT exp(-trT)Io(trT ). (346) 

7. Comparison with the previous formulation for 
E = 0 and concluding remarks 

In the previous form of the statistical theory for E = 0 by 
Becker & AI-Haddad (1990), the incoherent intensities 
l~(s o, Sh) and l~(so, Sh) are obtained as the solutions of the 
transfer equations 

dR~/dT = o.R~h(T) - gR~o(T) (31a) Ol~/OSo = --~l~/OSh = ~(I~ -- 1~) (35) 
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with the 'effective' boundary conditions 

l~(s 0, 0) = X 2 exp(-trs0) and It(0, Sh) = 0. (36) 

These equations are obtained by supposing that 
12 = 18 = 0 and E = 0 in the more general equations 
(14a) and (14b). As pointed out by Kato (1980) and by 
Becker & AI-Haddad (1990), the boundary condition 
l~(s o, 0 ) =  X 2 cannot be used together with equations 
(35) because these equations are not valid for s h = 0. The 
effective conditions (36) are based on the idea that the 
incident-beam intensity is attenuated in the crystal 
because of intensity transfer from the incident beam to 
the diffracted beams. In such an intuitive approach, the 
interference effect described as the optical theorem in §3 
is absent. We can apply the method of the preceding 
section to (35) and (36) in order to get the following 
transfer equations for the integrated intensities: 

dR~/dT -- aR~(T) - aR~(T) 

(previous formulation) 

dRih/dT = trR~(T) - aR~(T) + Q e x p ( - a T ) ,  

from which we easily get 

R~ = (a/2a)[1 - exp(- t rT)]  2 (37a) 

(previous formulation) 

R~ = (Q/2cr)[1 - exp(-2crr) ] .  (37b) 

It is interesting, from the point of view of possible 
applications, to compare the expressions (34b) and (37b) 
for the integrated reflectivity R~(T); they are similar for 
crT<< 1: 

R~ = QT(1 - a T + ~  (trT) 2 + . . . )  (new formulation) 

R~ = QT(1 - aT +2 (trT) 2 + . . . )  (previous formulation) 

(38) 

but a significant difference appears for values of aT  
around unity. For large values of aT  such that aT  >> l, 
using the well known asymptotic form of the modified 

• 

Bessel functions, it is found that R~, and R~ increase as 
(T/~) 1/2 in our new formulation, instead of reaching a 
finite limit in the previous one: 

Rih(T), Rio(T ) --+ QT /(2Jro.T) 1/2 = QX-I(T /2zrr) '/z 

(new formulation) 

(39) 

R~(T), Rio(T) --+ QT /2tr = Q/(2 x2r) 

(previous formulation). 
• 

The fact that R), and R~ have the same limiting behaviour 
in the new formulation (and in the previous one also) is 
due to the analytical form of equations (31a) and (31b): 
because the 'source' term (Q - dIVo/dT ) tends to zero as 

aT  tends to infinity, R'h(T) and R~(T) are then simply 
equivalent to [QT -/Vo(T)]/2 for aT  >> 1. 

• 

The fact that R~, and R~ have a finite limit in the 
previous formulation is clearly due to the effective 
boundary conditions (36); because of the factor 
exp(-trSo), intensity transfer from the incident beam to 
the diffracted beams is effectively limited to a finite 
depth in the crystal. This is not the case in our new 
formulation, in which a coherent forward-diffracted wave 
is present; this is a fundamental difference with respect to 
the previous formulation because the intensity conserva- 
tion requirement is then based on the interference effect 
of the optical theorem. Nevertheless, it is shown in (38) 
that the previous formulation represents a useful 
approximation to our new, more complete, formulation 
if the crystal is not too thick. 

The calculation of the incoherent intensities in the 
general case, E having any value between 0 and 1, will 
be considered in a future paper on the same basis as in 
the present paper for E -- 0. Special attention will be paid 
to the conditions imposed by the optical theorem which 
is of general validity. We expect an analytically new 
behaviour for the integrated reflectivity Rib(T), similar to 
the results obtained in the special case E = 0. 

Errata to a preceding paper [Guigay & Chukhovskii 
(1992). Acta Cryst. A48, 819-826]. 

In order to avoid confusion, we point out the following 
corrections to be introduced in the preceding paper 
concerning the coherent waves: 

(1) The term +ixES(Sh), corresponding to the 
discontinuity of Gh(S O, Sh) at s h = 0, must be added to 
the right-hand side of the second formula (10), in order to 
have the same definition of OGh/OS h in equations (10) and 
(11). 

(2) The same term ixES(sh) must be deleted from the 
first formula (11); this was an error independent of 
correction (1). 

These corrections were taken into account effectively 
later in this preceding paper; they had therefore no 
consequences on the calculations. 
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